
ServiceEnabler - Accessing Web

Sites as Web Services

Andreas Hubmer (0525780)

Technical University of Vienna

andreas.hubmer@student.tuwien.ac.at

We describe a system that is capable of turning web sites into web services

from the outside. It is controlled by simple con�guration �les that describe

how a web application is used by humans. This high-level description is used

to de�ne a web service and its operations. On invocation they simulate a

browser and the user interacting with a web page and retrieving information.

Conformance to standards like WSDL and SOAP ensures that every client

can use the ServiceEnabler system.

1

Contents

1 Introduction 3

2 Requirements 4

2.1 Con�guration . 4
2.2 Runtime Engine . 4
2.3 Web Service . 4
2.4 Session Management . 4
2.5 Caching . 5
2.6 Validation . 5

3 Usage 6

3.1 De�ning a service . 6
3.2 WSDL Mapping . 8
3.3 Running ServiceEnabler . 8
3.4 Accessing a service . 8
3.5 Further information . 9

4 Technical Description 10

4.1 Reading XML con�gurations 10
4.2 Services, Methods, Actions and Results 10
4.3 HTMLUnit . 13
4.4 Web Service . 13
4.5 Caching . 14
4.6 Building the ServiceEnabler 14
4.7 Used Libraries . 15

5 Conclusions and Outlook 16

A XML Schema De�nition for services 18

2

1 Introduction

The World Wide Web contains millions of web sites that provide a massive
amount of information. It can be seen as the hugest database on earth. But
compared to relational databases the Internet is missing structure. It was
designed to be read by humans and so HTML, the language of the web, is
still a mixture of content and style. Strict separation of content and style is
possible with XML and XSLT, but still rarely used.
Web services are the current way of sharing information and services among

information systems. They provide structured access and a de�ned be-
haviour. But there exist many web applications that will not be updated
any more and that provide their information only through HTML pages.
Such legacy web applications may be old but still provide interesting in-

formation. To programmatically access such web applications it is necessary
to simulate a web browser. Simulation can consist of sending requests, pars-
ing HTML, sending forms and maybe even running Java Script. This is a
complicated task and di�erent for every web page.
To assist in accessing legacy web applications we developed ServiceEn-

abler. ServiceEnabler is a wrapper around web applications that provides
structured access to them. It converts web applications into web services.
Simple con�guration �les determine what parts of a web application and
how they are exposed as a web service. ServiceEnabler takes the burden of
simulating a web browser and performs the necessary requests to get the ap-
propriate pages. It parses the pages, retrieves the information that is asked
for and provides the results via a web service. A client application only has
to know how to call a web service and does not need to interact with any
HTML pages.

3

2 Requirements

The following sections describe the required capabilities of the ServiceEnabler
system.

2.1 Con�guration

The ServiceEnabler system shall be con�gured by simple XML �les. A con-
�guration �le de�nes the name of a service and the methods it provides. A
method is again identi�ed by a unique name within the service. It consists
of a list of actions that are later applied sequentially to a web page. A
method may require parameters and provide results that are both de�ned in
the con�guration �le.
An XML schema de�nition should document the structure of such a con-

�guration �le.

2.2 Runtime Engine

The runtime engine has to provide the core functionality of executing the
methods de�ned in the con�guration. It is able to interact with web pages
and retrieve information out of web pages (single values and also groups of
data). Because web sites do not always obey the HTML speci�cation the
runtime engine has to properly deal with invalid HTML pages. It should
not deny working with invalid pages but try to be as fault-tolerant as web
browsers are.

2.3 Web Service

The ServiceEnabler system needs a web service interface that the client can
use to access the services of the runtime engine. This web service shall
support the SOAP protocol and provide a WSDL that describes itself. It
should be comprehensible how a speci�c con�guration leads to a web service
interface. The web service allows to execute methods of the runtime engine
and returns the provided results.

2.4 Session Management

Many web sites require a login before any action can be taken. This means
that whatever the ServiceEnabler system shall do on such a web site, �rst it
has to perform the login (e.g.: entering identi�er and password, clicking the
login button). The login sequence is always the same and is normally valid
for a period of at least some minutes. The ServiceEnabler system shall be
able to reuse a session in order that it saves time when a login is required a
second time while the �rst login is still valid.

4

2.5 Caching

Some results of a speci�c service can be valid for a longer time and therefore
the ServiceEnabler system shall provide caching of results. It shall be possible
to de�ne the caching behaviour in the con�guration of each service.
Going further: An automatic update of outdated results by a background

process would provide cached results at every time.

2.6 Validation

A service may become invalid because the underlying web page has changed.
The page can be (re)moved and the page design can be modi�ed. A mech-
anism is needed that checks the validity of a page and marks a service as
invalid in case of a validation error.

5

3 Usage

To use the ServiceEnabler system �rst the desired services have to be de�ned.
Then the ServiceEnabler system can be run and the underlying web sites can
be accessed as web services.

3.1 De�ning a service

A service corresponds to a web site and contains several methods than can
be applied to this web site. The de�nition of a service also states what the
resulting web service looks like. Each service is con�gured in a separate XML
�le and all the con�guration �les of the di�erent services should be put in
the same directory. A service is composed of methods that are de�ned as a
sequence of actions.
Appendix A presents the structure of a service de�nition as XML schema

de�nition. This section provides a textual description of the schema de�-
nition and some additional constraints that are not included in the schema
de�nition. They are not included in the schema de�nition because they can
not (easily) be expressed as a schema de�nition.
Whenever an interaction (a click, entering text, ...) with a web page is

necessary the interactive element on the page has to be identi�ed somehow.
This is achieved by XPath expressions. An example for identifying the title
of a web page is the XPath expression "/html/head/title".
Many interactions need additionally an argument (e.g.: the text to be

entered). Sometimes this is a constant value and sometimes the client shall
be able to set it. If it is a constant value then this constant value just has to
be de�ned. Otherwise a name of this variable argument has to be de�ned.
The name shall help a client to �nd out what argument he has to pass.

• service: A service needs a unique name, can have a login method and
contains a set of methods. The name is used to build the URL at which
it can be contacted. If a login method exists it is normally executed
before any invocation of any of the normal methods and its resulting
HTML page is used by them.

• login: The login method de�nes a starting point for the methods of a
service. All the other methods (except those de�ning an own "startUrl")
use the login method as a starting point and operate on the last page
of the login method. The login method can be simple and only de�ne
a start URL or it can be more complex and consist of several actions.
A typical login method would navigate to the login page of a web site,
enter user credentials and click the login button.

For the login method a "startUrl" has to be speci�ed. It indicates at
what URL it is starting. Its list of actions de�nes what actions should be
carried out to perform the login. Important is that none of the actions

6

must expect parameters and none of them must provide results. The
"validTime" attribute speci�es how long the resulting HTML page of
a login is valid and can be reused by subsequent calls to methods. It
should correspond to the time that a session is valid on the used web
site.

• method: A method can be called through the web service and de�nes
the actions that constitute its behaviour. It needs a unique name among
all the methods of the service. Before a method is actually performed,
normally the login method is executed. This can be prevented by speci-
fying a "startUrl" for a method. Then the login method is not executed
beforehand and instead the method starts at this URL. The "valid-
Time" attribute speci�es how long the results of a method invocation
with certain parameters are cached. This means that if a method is
called a second time with the same parameters and the "validTime"
has not passed then the cached results are returned without any of the
actions being invoked.

• click: This action simulates a click onto an element of a web page.
The element is identi�ed by its XPath.

• puttext: The puttext action simulates entering some text on a web
page. An XPath determines where the text should be entered. This
has to be either an HTML input �eld (<input>) or an HTML text area
(<textarea>). The text to be entered is either a constant value or a
variable value.

• select: This action simulates the selection of an item in a list, of a
radio button or of a check box. The selection element is identi�ed by
its XPath. The value can be constant or variable. If the selection
element is a list (<select>) then the value has to be equal to the value
(and not to the content) of one option (<option>) of the list. If the
selection element is a radio button or a check box and the value equals
to "true" (no matter whether upper or lower case) then the element is
selected. Otherwise it is deselected.

• getvalue: The getvalue action de�nes a value that should be returned
to the caller of the web service. An XPath denotes what part of an
HTML page should be returned and the "name" attribute speci�es the
name of this result.

• gettable: This action can be used to retrieve a table of data items of
an HTML page. It consists of at least one column and each column is
described by a name and an XPath that de�nes the elements of its col-
umn. If there are more columns than one than the number of elements
of each column have to be equal. Otherwise it would be impossible to
build a proper table.

7

• verify: The verify action can be used to check whether the current web
page is the one you expect and that it has the structure you expect. It
veri�es that at the given XPath exactly one element can be found and
that the text of this element meets the expectations.

• repeat: This action works like a loop and repeats a sequence of actions.
The "count" attribute determines the number of repetitions.

3.2 WSDL Mapping

Each service that is de�ned within a con�guration �le is mapped to an inde-
pendent WSDL service. For each service the WSDL is published at the URL
"http://<HOST>:<PORT>/axis2/services/<SERVICE-NAME>?wsdl".
The methods of a service are mapped to SOAP operations. For each

action with a variable argument within a method a parameter is added to
the operation. That means that the argument name should help to �nd out
the meaning of a variable.
Results of an operation are de�ned by the use of getvalue and gettable

actions within a method. Each of these actions form another part of the
result message.

3.3 Running ServiceEnabler

The ServiceEnabler system is provided as a "jar" archive and a set of li-
braries that are needed. The command to start it may look like this example:
java -jar path/to/se.jar. If no arguments are given then the web ser-
vice is bound to port 8080 and looks for service de�nitions in the directory
"services" (relative to the working directory). The service is bound to all
network interfaces and can be used by everyone that has TCP/IP access to
the server machine. A di�erent port and a di�erent con�guration directory
can be de�ned by giving them as command line arguments.
Example: java -jar path/to/se.jar 8081 my-services

3.4 Accessing a service

A list of the deployed services is provided as HTML page and can be reached
by pointing a web browser to the address "http://localhost:PORT". Each
service has its own WSDL that describes the possible operations, parameters
and arguments in detail. Any SOAP compatible client can be used to make
use of the operations.

3.5 Further information

JavaScript is disabled by default because it is most times not necessary and
requires a lot of computing power. Cookies are supported. Cached data is

8

stored in a hidden sub-directory of the home directory, called ".serviceen-
abler".

9

4 Technical Description

This section explains the architecture of the ServiceEnabler system and pro-
vides information to understand the source code and be able to modify it.
Figure 1 shows an overview of the underlying architecture. The components
of the ServiceEnabler system are coloured in di�erent shades of blue, the
external actors in other colours
To di�erentiate between Java methods and methods in the language of the

ServiceEnabler system (represented by the class Method), we will always talk
of functions in this section when referring to Java methods.

4.1 Reading XML con�gurations

To read in the XML con�guration �les XStream [8] is used. XStream is a
simple XML serialiser/deserialiser that does not provide validation. There-
fore the XML documents are validated before to the service schema de�nition
(see appendix A). And the serialisable objects validate themselves too.
The XmlSerialization class provides a function to load all XML �les

of a directory and deserialize them into service, method and action objects.
Finally they are grouped into a service group.

4.2 Services, Methods, Actions and Results

Figure 2 shows the interesting parts of the modelling of services. A ser-
vice group object is the container of the di�erent services and additionally
manages the caching system.
Each service has an independent cache to manage sessions and store method

results. Further it provides the function callMethod() to call any of its
methods. This is used by the message receiver that has to specify the name
of the method and its parameters. Before actually calling the method this
function has a look at the cache whether it is really necessary to execute the
method, and executes the login method (if needed).
A method provides a run function that iterates its actions and executes

them. It can specify that it does not need a login. That would mean that
it uses its own start URL and the service would not have to call the login
method before executing the method. The web service needs to know the
parameters a method expects and the number and type of results. Therefore
the method class includes functions that provide this information.
In an analogous manner every action has a function giving the names of

all the variables it needs and a function giving descriptions of all its results.
The important function the perform function that executes an action and
applies the action onto a method context. Applying an action onto a method
context means that its page may be changed, variables may be updated and
new results may be added.

10

Figure 1: Architectural overview

11

Figure 2: Class diagram of the service part (stripped-down)

12

Two types of results are currently supported: A simple result and a table
result. The simple result is just a string, the table result a matrix of strings.
They are de�ned by the actions getvalue and gettable. The attributes that
are de�ned in the service con�guration �les are stored in a result description.
Both of them have a name for identi�cation which is used as tag name in the
SOAP response. In addition for a table result the number of columns and
their names are stored in a table result description.

4.3 HTMLUnit

The library HTMLUnit [6] is used to access the legacy web sites. In simple
terms, it is a "browser for Java programs" and "models HTML documents
and provides an API that allows you to invoke pages, �ll out forms, click
links, etc." Its basic class is the WebClient, which corresponds to a web
browser program. It contains pages that are accessed by the actions using
XPath. The result of an XPath query are one or more DOM nodes. They
can be used to enter some text, to click onto them or to retrieve the text they
contain. The retrieved text is normally the text content of a node. Only if
the node is an attribute then its value is used or if the node is an HTML
input element then its value is used.
HTMLUnit's support for JavaScript is disabled by default because most

web sites can be used without and the use of JavaScript consumes needless
computing power. Nevertheless it can be helpful, for instance in AJAX web
applications. But then it should be tested because it does not work well with
all scripts. Details are available at the homepage of HTMLUnit [6]

4.4 Web Service

To expose the services as web services Apache Axis2 [1] is used. On startup
for each service an Axis service is built and all of them are combined to an
Axis service group. For each method within a service an Axis operation is
added to the Axis service. The argument and result types are de�ned as XML
schema elements, which is a little bit complex for result tables (produced by
gettable actions).
Finally the Axis service group is added to the Axis con�guration and the

whole thing is put into a simple HTTP server. It can also be used as a servlet
and put into any other servlet container.
When an HTTP request arrives it is dispatched by the web server and

passed through Axis to the MessageReceiver class. This class works as a
gateway between the XML world of the SOAP protocol and the Java world of
functions of the services and methods. It parses the method parameters and
calls the method. Afterwards it creates an XML element out of the method
results and puts it into the result message of the SOAP request.

13

4.5 Caching

Caching is used for two purposes: To provide session management and to
provide caching of method results. Mostly a service contains a login method
that is used to de�ne the starting point of all its methods. If its result can be
reused then that means that we can cache the last page of the login method
and directly use it the next time. Caching of method results can be enabled
by the user by specifying a "validTime" for a method. This means that for
a given time a cached result can be returned instead of executing the actions
of a method. Important is that the method parameters have to be the same.
We decided to use ehCache [4] for caching because it is a mature library

and provides disk caching too. It supports to create several independent
named caches that means several named pools of cached items. For each
service a separate cache is used. It is assigned by the service group which
manages the caches. Cached items are identi�ed by a string. The result of a
login method is always identi�ed by "+login". Method results are identi�ed
by the name of the method and a concatenation of the values of the method
arguments.
In the beginning we thought it would be possible to cache the web page

objects of HTMLUnit directly. But they are mutable and it turned out to
be impossible to create independent copies. Therefore the cached elements
are the web response objects. They contain the HTTP response of the web
server. The drawback of caching only the web response is that external �les
like JavaScript �les or CSS �les are not cached. This also means that in the
case of HTML frames only the page that de�nes the frames is cached and
not the frame pages that contain the relevant information.

4.6 Building the ServiceEnabler

Ant is used as a build system. The required libraries are listed in section 4.7
and can be found in the "lib" directory of the repository. The ant targets
"compile" and "run" allow to easily build and run the ServiceEnabler. The
target "jar" creates a JAR archive �le that can be executed using the tar-
get "run-jar". The JAR �le does not contain the required libraries and is
therefore very small (ca. 80KB). This brings the advantage that in case of an
update only this small archive has to be exchanged. That also means that for
deployment the JAR �le and and the "lib" directory have to be distributed.

14

4.7 Used Libraries

Library Field of application
Axis2 1.4.1[1] Providing the web services and the WSDLs
ehCache 1.6.0[4] Caching of login pages and of results
HTMLUnit 2.3[6] Accessing and manipulating web sites
JUnit 4[7] Unit testing
Log4J 1.2.15[2] Logging
XStream 1.3[8] Reading in XML con�guration �les

15

5 Conclusions and Outlook

The ServiceEnabler system shows how it is possible to treat web sites as
web services. It provides an infrastructure that only needs simple XML
con�guration �les that describe the used web sites at a high level. The
descriptions correspond to the actions a real user would carry out. The
ServiceEnabler system performs these actions and allows to access web sites
as interoperable web services.
A tool to help the user with the creation of the con�gurations would be an

important improvement. At the moment the XML con�guration �les have to
be written by hand. This tool should be a browser plugin that works like a
macro recorder. The user should have to de�ne a starting page and then for
every user action a ServiceEnabler action is de�ned. If the user enters text
or selects an item then he should be asked whether this is a constant value
or a variable one. In the case of a variable value the user has to provide a
descriptive name. To de�ne results the user should be able to select parts of
a web page like it is possible with Firebug [5] or Dapper [3].
Another improvement would be to provide a servlet interface. At the

moment a simple HTTP server of the Axis project is used. For bigger in-
stallations the use of a high performance servlet container would provide a
better throughput. This enhancement should be easily to add because Axis
is prepared for this.
To improve stability and recognise errors type checking could be added.

In the con�guration for each input and output value a type could be de�ned
and veri�ed at runtime. If a wrong type was detected a fault should be
thrown. This would help to detect invalid input of the client applications
and unexpected result values of the web sites.
And �nally - this is a more ambitious feature request - a template engine

including scripting support would provide a lot of new opportunities. Instead
of only distinguishing between constant values and variables each value could
be the result of a calculation. Also, each result value could be transformed
or merged with other values. The JavaScript engine that is already used by
HTMLUnit could be reused to achieve this.

16

References

[1] Apache axis 2. http://ws.apache.org/axis2.

[2] Apache log4j. http://ehcache.sourceforge.net.

[3] Dapper. http://www.dapper.net/.

[4] ehcache. http://ehcache.sourceforge.net.

[5] Firebug. http://getfirebug.com/.

[6] Htmlunit. http://logging.apache.org/log4j/.

[7] Junit. http://www.junit.org/.

[8] Xstream. http://xstream.codehaus.org.

17

http://ws.apache.org/axis2
http://ehcache.sourceforge.net
http://www.dapper.net/
http://ehcache.sourceforge.net
http://getfirebug.com/
http://logging.apache.org/log4j/
http://www.junit.org/
http://xstream.codehaus.org

A XML Schema De�nition for services

<?xml version=" 1 .0 " encoding="UTF−8"?>

<!−− XML schema d e f i n i t i o n f o r a Serv i c e w i th in

the Serv i ceEnab l e r i n f r a s t r u c t u r e .

Author: Andreas Hubmer −−>

<xs:schema xmlns :xs=" ht tp : //www.w3 . org /2001/XMLSchema"
targetNamespace=" ht tp : //www. tuwien . ac . at / s e r v i c e e n ab l e r / s e r v i c e "
xmlns=" ht tp : //www. tuwien . ac . at / s e r v i c e e n ab l e r / s e r v i c e "
elementFormDefault=" q u a l i f i e d ">

<xs : e l ement name=" s e r v i c e ">
<xs:complexType>

<xs : s equence>
<xs : e l ement minOccurs="0" name=" l o g i n " type=" loginmethod"/>
<xs : e l ement maxOccurs="unbounded" name="method" type="method"/>

</ xs : s equence>
<x s : a t t r i b u t e name="name" use=" requ i r ed " type="name"/>

</xs:complexType>
<xs :key name="methodname">

<x s : s e l e c t o r xpath="method"/>
<x s : f i e l d xpath="@name"/>

</ xs :key>
</ xs : e l ement>

<xs:complexType name="method">
<xs : s equence>

<xs : e l ement type=" ac t i on s " name=" ac t i on s "/>
</ xs : s equence>
<x s : a t t r i b u t e name="name" use=" requ i r ed " type="name"/>
<x s : a t t r i b u t e name=" s t a r tU r l " use=" opt i ona l " type="xs:anyURI"/>
<x s : a t t r i b u t e name="validTime" type=" xs :nonNegat ive Intege r " default="0"/>

</xs:complexType>

<xs:complexType name=" loginmethod">
<xs : s equence>

<xs : e l ement type=" ac t i on s " name=" ac t i on s "/>
</ xs : s equence>
<x s : a t t r i b u t e name=" s t a r tU r l " use=" requ i r ed " type="xs:anyURI"/>
<x s : a t t r i b u t e name="validTime" type=" xs :nonNegat ive Intege r " default="0"/>

</xs:complexType>

<xs:complexType name=" ac t i on s ">
<xs : s equence>

<x s : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs : e l ement name=" c l i c k " type=" c l i c k "/>
<xs : e l ement name="puttext " type=" puttext "/>
<xs : e l ement name=" v e r i f y " type=" v e r i f y "/>
<xs : e l ement name=" ge t t ab l e " type=" ge t t ab l e "/>
<xs : e l ement name=" s e l e c t " type=" s e l e c t "/>

18

<xs : e l ement name=" getva lue " type=" getva lue "/>
<xs : e l ement name=" repeat " type=" repeat "/>

</ x s : c h o i c e>
</ xs : s equence>

</xs:complexType>

<xs:complexType name=" ge t t ab l e ">
<xs : s equence>

<xs : e l ement maxOccurs="unbounded" name="column" type="column"/>
</ xs : s equence>
<x s : a t t r i b u t e name="name" use=" requ i r ed " type="name"/>

</xs:complexType>

<xs:complexType name="column">
<xs : s equence>

<xs : e l ement name="name" type="name"/>
<xs : e l ement name="xpath" type="xpath"/>

</ xs : s equence>
</xs:complexType>

<xs:complexType name=" s e l e c t ">
<xs : s equence>

<xs : e l ement name="xpath" type="xpath"/>
<xs : e l ement name="argname" type="name"/>

</ xs : s equence>
</xs:complexType>

<xs:complexType name=" getva lue ">
<xs : s equence>

<xs : e l ement name="xpath" type="xpath"/>
</ xs : s equence>
<x s : a t t r i b u t e name="name" use=" requ i r ed " type="name"/>

</xs:complexType>

<xs:complexType name="puttext ">
<xs : s equence>

<xs : e l ement name="xpath" type="xpath"/>
<xs : e l ement name="argname" type="name"/>
<xs : e l ement minOccurs="0" name=" constantva lue " type=" constantva lue "/>

</ xs : s equence>
</xs:complexType>

<xs:complexType name=" c l i c k ">
<xs : s equence>

<xs : e l ement name="xpath" type="xpath" />
</ xs : s equence>

</xs:complexType>

<xs:complexType name=" v e r i f y ">
<xs : s equence>

<xs : e l ement name="xpath" type="xpath"/>
<xs : e l ement name=" expected " type=" x s : s t r i n g "/>

19

</ xs : s equence>
</xs:complexType>

<xs:complexType name=" repeat ">
<xs:complexContent>

<xs : e x t en s i on base=" ac t i on s ">
<x s : a t t r i b u t e name="count" use=" requ i r ed " type=" x s : p o s i t i v e I n t e g e r "/>

</ x s : e x t en s i on>
</xs:complexContent>

</xs:complexType>

<xs:s impleType name="name">
<x s : r e s t r i c t i o n base="xs:NCName"/>

</xs:s impleType>
<xs:s impleType name="xpath">

<x s : r e s t r i c t i o n base=" x s : s t r i n g "/>
</xs:s impleType>
<xs:s impleType name=" constantva lue ">

<x s : r e s t r i c t i o n base=" x s : s t r i n g "/>
</xs:s impleType>

</xs:schema>

20

	Introduction
	Requirements
	Configuration
	Runtime Engine
	Web Service
	Session Management
	Caching
	Validation

	Usage
	Defining a service
	WSDL Mapping
	Running ServiceEnabler
	Accessing a service
	Further information

	Technical Description
	Reading XML configurations
	Services, Methods, Actions and Results
	HTMLUnit
	Web Service
	Caching
	Building the ServiceEnabler
	Used Libraries

	Conclusions and Outlook
	XML Schema Definition for services

